skillby DNYoussef
cascade-orchestrator
Creates sophisticated workflow cascades coordinating multiple micro-skills with sequential pipelines, parallel execution, conditional branching, and Codex sandbox iteration. Enhanced with multi-model routing (Gemini/Codex), ruv-swarm coordination, memory persistence, and audit-pipeline patterns for production workflows.
Installs: 0
Used in: 1 repos
Updated: 2d ago
$
npx ai-builder add skill DNYoussef/cascade-orchestratorInstalls to .claude/skills/cascade-orchestrator/
# Cascade Orchestrator (Enhanced)
## Overview
Manages workflows (cascades) that coordinate multiple micro-skills into cohesive processes. This enhanced version integrates Codex sandbox iteration, multi-model routing, ruv-swarm coordination, and memory persistence across stages.
## Philosophy: Composable Excellence
Complex capabilities emerge from composing simple, well-defined components.
**Enhanced Capabilities**:
- **Codex Sandbox Iteration**: Auto-fix failures in isolated environment (from audit-pipeline)
- **Multi-Model Routing**: Use Gemini/Codex based on stage requirements
- **Swarm Coordination**: Parallel execution via ruv-swarm MCP
- **Memory Persistence**: Maintain context across stages
- **GitHub Integration**: CI/CD pipeline automation
**Key Principles**:
1. Separation of concerns (micro-skills execute, cascades coordinate)
2. Reusability through composition
3. Flexible orchestration patterns
4. Declarative workflow definition
5. Intelligent model selection
## Cascade Architecture (Enhanced)
### Definition Layer
**Extended Stage Types**:
```yaml
stages:
- type: sequential # One after another
- type: parallel # Simultaneous execution
- type: conditional # Based on runtime conditions
- type: codex-sandbox # NEW: Iterative testing with auto-fix
- type: multi-model # NEW: Intelligent AI routing
- type: swarm-parallel # NEW: Coordinated via ruv-swarm
```
**Enhanced Data Flow**:
```yaml
data_flow:
- stage_output: previous stage results
- shared_memory: persistent across stages
- multi_model_context: AI-specific formatting
- codex_sandbox_state: isolated test environment
```
**Advanced Error Handling**:
```yaml
error_handling:
- retry_with_backoff
- fallback_to_alternative
- codex_auto_fix # NEW: Auto-fix via Codex
- model_switching # NEW: Try different AI
- swarm_recovery # NEW: Redistribute tasks
```
### Execution Engine (Enhanced)
**Stage Scheduling with AI Selection**:
```python
for stage in cascade.stages:
if stage.type == "codex-sandbox":
execute_with_codex_iteration(stage)
elif stage.type == "multi-model":
model = select_optimal_model(stage.task)
execute_on_model(stage, model)
elif stage.type == "swarm-parallel":
execute_via_ruv_swarm(stage)
else:
execute_standard(stage)
```
**Codex Sandbox Iteration Loop**:
```python
def execute_with_codex_iteration(stage):
"""
From audit-pipeline Phase 2: functionality-audit pattern
"""
results = execute_tests(stage.tests)
for test in failed_tests(results):
iteration = 0
max_iterations = 5
while test.failed and iteration < max_iterations:
# Spawn Codex in sandbox
fix = spawn_codex_auto(
task=f"Fix test failure: {test.error}",
sandbox=True,
context=test.context
)
# Re-test
test.result = rerun_test(test)
iteration += 1
if test.passed:
apply_fix_to_main(fix)
break
if still_failed(test):
escalate_to_user(test)
return aggregate_results(results)
```
**Multi-Model Routing**:
```python
def select_optimal_model(task):
"""
Route to best AI based on task characteristics
"""
if task.requires_large_context:
return "gemini-megacontext" # 1M tokens
elif task.needs_current_info:
return "gemini-search" # Web grounding
elif task.needs_visual_output:
return "gemini-media" # Imagen/Veo
elif task.needs_rapid_prototype:
return "codex-auto" # Full Auto
elif task.needs_alternative_view:
return "codex-reasoning" # GPT-5-Codex
else:
return "claude" # Best overall
```
## Enhanced Cascade Patterns
### Pattern 1: Linear Pipeline with Multi-Model
```yaml
cascade:
name: enhanced-data-pipeline
stages:
- stage: extract
model: auto-select
skill: extract-data
- stage: validate
model: auto-select
skill: validate-data
error_handling:
strategy: codex-auto-fix # NEW
- stage: transform
model: codex-auto # Fast prototyping
skill: transform-data
- stage: report
model: gemini-media # Generate visuals
skill: generate-report
```
### Pattern 2: Parallel Fan-Out with Swarm
```yaml
cascade:
name: code-quality-swarm
stages:
- stage: quality-checks
type: swarm-parallel # NEW: Via ruv-swarm
skills:
- lint-code
- security-scan
- complexity-analysis
- test-coverage
swarm_config:
topology: mesh
max_agents: 4
strategy: balanced
- stage: aggregate
skill: merge-quality-reports
```
### Pattern 3: Codex Sandbox Iteration
```yaml
cascade:
name: test-and-fix
stages:
- stage: functionality-audit
type: codex-sandbox # NEW
test_suite: comprehensive
codex_config:
mode: full-auto
max_iterations: 5
sandbox: true
error_recovery:
auto_fix: true
escalate_after: 5
- stage: validate-fixes
skill: regression-tests
```
### Pattern 4: Conditional with Model Switching
```yaml
cascade:
name: adaptive-workflow
stages:
- stage: analyze
model: gemini-megacontext # Large context
skill: analyze-codebase
- stage: decide
type: conditional
condition: ${analyze.quality_score}
branches:
high_quality:
model: codex-auto # Fast path
skill: deploy-fast
low_quality:
model: multi-model # Comprehensive path
cascade: deep-quality-audit
```
### Pattern 5: Iterative with Memory
```yaml
cascade:
name: iterative-refinement
stages:
- stage: refactor
model: auto-select
skill: refactor-code
memory: persistent # NEW
- stage: check-quality
skill: quality-metrics
- stage: repeat-decision
type: conditional
condition: ${quality < threshold}
repeat: refactor # Loop back
max_iterations: 3
memory_shared: true # Context persists
```
## Creating Enhanced Cascades
### Step 1: Define with AI Considerations
**Identify Model Requirements**:
```markdown
For each stage, determine:
- Large context needed? → Gemini
- Current web info needed? → Gemini Search
- Visual output needed? → Gemini Media
- Rapid prototyping needed? → Codex
- Testing with auto-fix? → Codex Sandbox
- Best overall reasoning? → Claude
```
### Step 2: Design with Swarm Parallelism
**When to Use Swarm**:
- Multiple independent tasks
- Resource-intensive operations
- Need load balancing
- Want fault tolerance
**Swarm Configuration**:
```yaml
swarm_config:
topology: mesh | hierarchical | star
max_agents: number
strategy: balanced | specialized | adaptive
memory_shared: true | false
```
### Step 3: Add Codex Iteration for Quality
**Pattern from audit-pipeline**:
```yaml
stages:
- type: codex-sandbox
tests: ${test_suite}
fix_strategy:
auto_fix: true
max_iterations: 5
sandbox_isolated: true
network_disabled: true
regression_check: true
```
### Step 4: Enable Memory Persistence
**Shared Memory Across Stages**:
```yaml
memory:
persistence: enabled
scope: cascade | global
storage: mcp__ruv-swarm__memory
keys:
- analysis_results
- intermediate_outputs
- learned_patterns
```
## Enhanced Cascade Definition Format
```yaml
cascade:
name: cascade-name
description: What this accomplishes
version: 2.0.0
config:
multi_model: enabled
swarm_coordination: enabled
memory_persistence: enabled
github_integration: enabled
inputs:
- name: input-name
type: type
description: description
stages:
- stage_id: stage-1
name: Stage Name
type: sequential | parallel | codex-sandbox | multi-model | swarm-parallel
model: auto-select | gemini | codex | claude
# For micro-skill execution
skills:
- skill: micro-skill-name
inputs: {...}
outputs: {...}
# For Codex sandbox
codex_config:
mode: full-auto
sandbox: true
max_iterations: 5
# For swarm execution
swarm_config:
topology: mesh
max_agents: 4
# For memory
memory:
read_keys: [...]
write_keys: [...]
error_handling:
strategy: retry | codex-auto-fix | model-switch | swarm-recovery
max_retries: 3
fallback: alternative-skill
memory:
persistence: enabled
scope: cascade
github_integration:
create_pr: on_success
report_issues: on_failure
```
## Real-World Enhanced Cascades
### Example 1: Complete Development Workflow
```yaml
cascade: complete-dev-workflow
stages:
1. gemini-search: "Research latest framework best practices"
2. codex-auto: "Rapid prototype with best practices"
3. codex-sandbox: "Test everything, auto-fix failures"
4. gemini-media: "Generate architecture diagrams"
5. style-audit: "Polish code to production standards"
6. github-pr: "Create PR with comprehensive report"
```
### Example 2: Legacy Modernization
```yaml
cascade: modernize-legacy-code
stages:
1. gemini-megacontext: "Analyze entire 50K line codebase"
2. theater-detection: "Find all mocks and placeholders"
3. [swarm-parallel]:
- codex-auto: "Complete implementations" (parallel)
- gemini-media: "Document architecture"
4. codex-sandbox: "Test all changes with auto-fix"
5. style-audit: "Final polish"
6. generate-pr: "Create PR with before/after comparison"
```
### Example 3: Bug Fix with RCA
```yaml
cascade: intelligent-bug-fix
stages:
1. root-cause-analyzer: "Deep RCA analysis"
2. multi-model-decision:
condition: ${rca.complexity}
simple: codex-auto (quick fix)
complex: [
gemini-megacontext (understand broader context),
codex-reasoning (alternative approaches),
claude (implement best approach)
]
3. codex-sandbox: "Test fix thoroughly"
4. regression-suite: "Ensure no breakage"
5. github-issue-update: "Document fix with RCA report"
```
## Integration Points
### With Micro-Skills
- Executes micro-skills in stages
- Passes data between skills
- Handles skill errors gracefully
### With Multi-Model System
- Routes stages to optimal AI
- Uses gemini-* skills for unique capabilities
- Uses codex-* skills for prototyping/fixing
- Uses Claude for best reasoning
### With Audit Pipeline
- Incorporates theater → functionality → style pattern
- Uses Codex sandbox iteration from Phase 2
- Applies quality gates throughout
### With Slash Commands
- Commands trigger cascades
- Parameter mapping from command to cascade
- Progress reporting to command interface
### With Ruv-Swarm MCP
- Parallel stage coordination
- Memory persistence
- Neural training
- Performance tracking
## Working with Enhanced Cascade Orchestrator
**Invocation**:
"Create a cascade that [end goal] using [micro-skills] with [Codex/Gemini/swarm] capabilities"
**The orchestrator will**:
1. Design workflow with optimal AI model selection
2. Configure Codex sandbox for testing stages
3. Set up swarm coordination for parallel stages
4. Enable memory persistence across stages
5. Integrate with GitHub for CI/CD
6. Generate executable cascade definition
**Advanced Features**:
- Automatic model routing based on task
- Codex iteration loop for auto-fixing
- Swarm coordination for parallelism
- Memory sharing across stages
- GitHub PR/issue integration
- Performance monitoring and optimization
---
**Version 2.0 Enhancements**:
- Codex sandbox iteration pattern
- Multi-model intelligent routing
- Ruv-swarm MCP integration
- Memory persistence
- GitHub workflow automation
- Enhanced error recoveryQuick Install
$
npx ai-builder add skill DNYoussef/cascade-orchestratorDetails
- Type
- skill
- Author
- DNYoussef
- Slug
- DNYoussef/cascade-orchestrator
- Created
- 6d ago