skillby aRustyDev
Memory
Installs: 0
Used in: 1 repos
Updated: 2d ago
$
npx ai-builder add skill aRustyDev/memoryInstalls to .claude/skills/memory/
# Memory Router Skill
Route memory operations to appropriate backends (Graphiti for knowledge, AgentDB for coordination).
## Activation Triggers
- "remember this"
- "store this knowledge"
- "save for later"
- "search memory"
- "recall"
- "what do we know about"
- "memory"
- "knowledge graph"
- "agent context"
## Memory Channels
This skill manages four memory channels:
| Channel | Backend | Use For |
|---------|---------|---------|
| **long-term** | Graphiti | Architecture, patterns, permanent knowledge |
| **sprint** | Graphiti | Current feature work, research, WIP decisions |
| **team** | AgentDB | Agent coordination, task handoffs, shared state |
| **short-term** | Context | Immediate task, scratchpad (automatic) |
## Instructions
### When Storing Information
1. **Determine the appropriate channel** based on content type:
- **Long-term** (permanent project knowledge):
- Architecture decisions (ADRs)
- Code patterns and conventions
- API schemas and contracts
- Domain entity definitions
- Team standards
- **Sprint** (current work context):
- Feature research and findings
- WIP design decisions
- Investigation results
- Temporary workarounds
- Sprint-specific patterns
- **Team** (agent coordination):
- Task assignments and status
- Handoff context between agents
- Shared variables and flags
- Agent capabilities and availability
2. **Use the appropriate MCP tool**:
For Graphiti (long-term and sprint channels):
```
Use: mcp__graphiti__add_episode
Parameters:
- name: Descriptive name for the knowledge
- episode_body: The content to store
- source: Origin of the knowledge (e.g., "user_conversation", "code_analysis")
- episode_type: "message" | "json" | "text"
```
For AgentDB (team channel):
```
Use: mcp__claude-flow__agent_set_state or mcp__claude-flow__shared_state_set
Parameters vary by operation type
```
3. **Add appropriate metadata**:
- `channel`: The target channel
- `content_type`: Specific type (adr, pattern, research, task_assignment, etc.)
- `related_entities`: Links to related knowledge
- `temporal_context`: When this knowledge is valid
### When Searching/Recalling
1. **Determine which channels to search**:
- For architectural questions: `["long_term"]`
- For current work context: `["sprint", "long_term"]`
- For agent coordination: `["team"]`
- For comprehensive search: `["long_term", "sprint", "team"]`
2. **Use federated search**:
For Graphiti:
```
Use: mcp__graphiti__search
Parameters:
- query: Natural language search query
- num_results: Number of results (default: 10)
```
For AgentDB:
```
Use: mcp__claude-flow__memory_search
Parameters:
- query: Search query
- limit: Number of results
```
3. **Merge and present results** by relevance, noting the source channel.
### Content Type Classification
When the user doesn't specify a channel, classify content automatically:
| Content Pattern | Channel | Content Type |
|-----------------|---------|--------------|
| "ADR", "architecture decision" | long_term | adr |
| "pattern", "convention", "standard" | long_term | pattern |
| "schema", "API contract" | long_term | schema |
| "researching", "investigating" | sprint | research |
| "for this feature", "current work" | sprint | feature_spec |
| "WIP", "temporary", "for now" | sprint | wip_decision |
| "agent status", "task update" | team | agent_status |
| "hand off to", "coordinate with" | team | handoff |
### Promotion Operations
When sprint knowledge becomes permanent:
1. Confirm with user: "This appears to be stable knowledge. Promote to long-term memory?"
2. If confirmed, copy from sprint to long-term with provenance metadata
3. Optionally archive the sprint version
### Example Interactions
**User**: "Remember that we decided to use JWT for authentication"
**Action**: Store in `long_term` channel as `pattern` content type
**User**: "Save my research on the rate limiting options"
**Action**: Store in `sprint` channel as `research` content type
**User**: "What do we know about the UserService?"
**Action**: Search `long_term` and `sprint` channels for "UserService"
**User**: "Update the backend worker that the API integration is complete"
**Action**: Update `team` channel with agent handoff context
**User**: "This workaround for the caching issue should be documented permanently"
**Action**: Promote from `sprint` to `long_term` with promotion metadata
## MCP Tools Used
### Graphiti MCP Server
- `mcp__graphiti__add_episode` - Store knowledge
- `mcp__graphiti__search` - Semantic search
- `mcp__graphiti__get_entity` - Retrieve specific entity
- `mcp__graphiti__get_entity_edge` - Get relationships
### claude-flow MCP Server
- `mcp__claude-flow__memory_store` - Store in AgentDB
- `mcp__claude-flow__memory_search` - Search AgentDB
- `mcp__claude-flow__shared_state_set` - Set shared state
- `mcp__claude-flow__shared_state_get` - Get shared state
- `mcp__claude-flow__agent_set_state` - Update agent state
## Configuration
Ensure both MCP servers are configured:
```json
{
"mcpServers": {
"graphiti": {
"command": "graphiti-mcp-server",
"args": ["--falkordb-url", "redis://localhost:6379"]
},
"claude-flow": {
"command": "npx",
"args": ["claude-flow@alpha", "mcp", "start"]
}
}
}
```
## Fallback Behavior
If a backend is unavailable:
1. **Graphiti unavailable**: Fall back to AgentDB for all storage (with warning)
2. **AgentDB unavailable**: Fall back to Graphiti for team coordination (with warning)
3. **Both unavailable**: Use context window only, warn user about persistence loss
## Related Documentation
- [[adr-memory-channel-architecture]] - Full architecture decision
- [[adr-agent-framework-strategy]] - Agent framework strategy
- [Graphiti Docs](https://docs.falkordb.com/agentic-memory/graphiti.html)
- [claude-flow Docs](https://github.com/ruvnet/claude-flow)Quick Install
$
npx ai-builder add skill aRustyDev/memoryDetails
- Type
- skill
- Author
- aRustyDev
- Slug
- aRustyDev/memory
- Created
- 6d ago