Installs: 0
Used in: 1 repos
Updated: 1d ago
$
npx ai-builder add skill derekcrosslu/quantconnectInstalls to .claude/skills/quantconnect/
# QuantConnect Strategy Development (Component-Based)
Develop modular strategies using reusable components: `./component`
## When to Load This Skill
- Creating new QuantConnect strategy
- Need to add indicators, signals, or risk management
- Troubleshooting QC-specific issues
## Component Library (Progressive Disclosure)
**Use components instead of writing from scratch**. Load only what you need.
### Discovery
```bash
# List all components
./component list
# List by category
./component list indicators
./component list signals
./component list risk_management
# Search by keyword
./component search momentum
./component search stop
```
### Integration
```bash
# View component code
./component show add_rsi
# Get integration guide
./component explain add_rsi
```
**IMPORTANT: Do not read component source files directly. Use --help and explain commands.**
## Available Components
### Indicators (indicators/)
- **add_rsi** - RSI indicator for overbought/oversold
- **add_sma** - Simple Moving Average for trend detection
### Signals (signals/)
- **mean_reversion** - RSI-based mean reversion signals
- **momentum_breakout** - SMA crossover momentum signals
### Risk Management (risk_management/)
- **stop_loss** - Fixed or trailing stop loss
### Sentiment (sentiment/)
- Future: Kalshi prediction market integration
## Strategy Development Workflow
### 1. Plan Strategy
```
1. Choose hypothesis (mean reversion, momentum, etc.)
2. Select components needed:
- Indicators: RSI, SMA, MACD?
- Signals: Mean reversion, breakout?
- Risk: Stop loss, position sizing?
```
### 2. Browse Components
```bash
./component list
./component explain COMPONENT
```
### 3. Build Strategy
```python
from AlgorithmImports import *
from strategy_components.indicators.add_rsi import add_rsi
from strategy_components.signals.mean_reversion import MeanReversionSignal
class MyStrategy(QCAlgorithm):
def Initialize(self):
# Add components
self.rsi = add_rsi(self, symbol="SPY", period=14)
self.signal = MeanReversionSignal(oversold=30, overbought=70)
def OnData(self, data):
# Use components
if self.rsi.IsReady:
signal = self.signal.get_signal(self.rsi.Current.Value, self.is_long)
# Execute trades...
```
### 4. Test Strategy
```bash
# Local test first (if possible)
# Then: ./qc_backtest run --strategy strategy.py
```
## Common Patterns
### Mean Reversion
```python
# Components: add_rsi, mean_reversion
self.rsi = add_rsi(self, "SPY", period=14)
self.signal = MeanReversionSignal(oversold=30, overbought=70)
```
### Momentum Breakout
```python
# Components: add_sma, momentum_breakout
self.sma = add_sma(self, "SPY", period=20)
self.signal = MomentumBreakoutSignal(volume_confirmation=True)
```
### With Stop Loss
```python
# Add: stop_loss component
self.stop_loss = StopLossManager(stop_loss_pct=0.05, trailing=False)
# Call: self.stop_loss.set_entry_price(price) after entry
# Check: if self.stop_loss.should_exit(current_price): ...
```
## Beyond MCP Principles
1. **Use component CLI, not source code**
- `./component list` - browse available
- `./component explain COMPONENT` - integration guide
- Don't read .py files directly
2. **Progressive Disclosure**
- Load only components you need
- Don't load entire 955-line skill
3. **Modular Architecture**
- Components are independent
- Mix and match as needed
- Reuse across strategies
## Critical QC Errors (Still Important)
### Error 1: SMA NoneType
**Problem**: `self.sma.Current` is None
**Fix**: Check `if self.sma.IsReady` before using
### Error 2: Data Key Missing
**Problem**: `KeyError` on `data[self.symbol]`
**Fix**: Check `if data.ContainsKey(self.symbol)` first
### Error 3: Warmup Issues
**Problem**: Strategy trades during warmup
**Fix**: `if self.IsWarmingUp: return`
## Authoritative Documentation
**When confused about QC API or architecture:**
- QC Docs: https://www.quantconnect.com/docs
- Component README: `SCRIPTS/strategy_components/README.md`
**Do not guess. Use component CLI and QC docs as source of truth.**
---
**Context Savings**: 120 lines (vs 955 lines in old skill) = 87% reduction
**Progressive Disclosure**: Use component CLI to load only what you need
**Trifecta**: CLI works for humans, teams, AND agents
**Beyond MCP Pattern**: Use --help and explain, not source codeQuick Install
$
npx ai-builder add skill derekcrosslu/quantconnectDetails
- Type
- skill
- Author
- derekcrosslu
- Slug
- derekcrosslu/quantconnect
- Created
- 4d ago